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Abstract

Cheap, low-powered programmable hardware, such as the BBC micro:bit, has lead to a renaissance
of computer science education in schools; however many programming environments used by stu-
dents either require the transfer of source code to be interpreted on the device, or the transfer of a
much larger, compiled binary.

We demonstrate the use of a stack-based intermediate bytecode for programs that can be Just-in-
Time (JIT) compiled on a BBC micro:bit to support a broad range of programming languages on a
limited device, reduce the transfer requirement, and improve performance by avoiding interpreta-
tion.

The use of a JIT compiler on such a low-powered device demonstrates the possibility of software
updates to sensors or Internet of Things (IoT) devices in environments with extremely limited
network connectivity and power.
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Chapter 1

Introduction

The BBCmicro:bit is a microcontroller designed to encourage schoolchildren to explore technology
and programming [Mic16]. A number of educational tools support programming in block-based
visual programming languages, interpreted languages, and natively compiled languages. Stack is an
extensible bytecode for programs, developed at Oxford by Alex Rogers, for teaching stack machines
and programming microcontrollers. It combines a programming model similar to traditional stack
machines with the ability to add instructions that directly use device features such as LEDs or
sensors. This project contributes a JIT compiler for Stack code executing on the micro:bit.

Stack is specified as a bytecode representation for programs that execute on the Stack Virtual Ma-
chine (VM), as described in Appendix A. The VMmaintains an operand stack of integer values and a
call stack of return addresses, and Stack instructions affect at least one of these stacks. For instance,
the instruction ADD pops two values off the operand stack and pushes back their sum whilst the
CALL instruction pops a value off the operand stack, pushes the address of the next instruction to
the call stack, and jumps to the popped address.

1.1 Motivation

All existing programming tools for the micro:bit interpret source code or compile it Ahead-of-Time
(AOT). To run a program on the micro:bit most of these tools require a binary to be ‘flashed’ via
USB, followed by a device reboot, which often takes around 10 s. Interpreted code can be transferred
to the device faster, as only the programmer’s source code needs to be transferred, but at the
expense of significantly worse performance. JIT compilation offers a compromise that requires the
transfer of a very small amount of data compared to the full native binary, but the potential for
comparable performance to native code, and far superior performance than interpreting code.

Reducing the transfer time for performant code benefits students as it makes it easier for them to
build an intuitive mental model of how programming constructs work faster [Sen+16; Sen+17].
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1.2. REQUIREMENTS CHAPTER 1. INTRODUCTION

Demonstrating JIT compilation on a low-powered microcontroller suggests the technique could
be applied to software on IoT devices. Long-range wireless protocols for IoT devices often permit
payloads on the order of hundreds of bytes per day, which is much too small for native code, but
large enough for one or more functions encoded in Stack bytecode [LoR18; Sig18].

1.2 Requirements

This project must implement an ‘environment’ that supports receiving Stack bytecode via a USB
serial connection, JIT compiling that bytecode to native Arm code, and writing the compiled code
to flash so that the micro:bit can reboot and later execute the same program.

The JIT compiled Arm codemust exactly mimic the behaviour of the theoretical Stack VM, except in
cases where physical limitations prevent perfect execution, or support for infrequently used Stack
features would reduce performance in the general case. In the case of an error, the compiled code
must return control to the surrounding environment with an appropriate error code.

Stack programs are often very small, and typical handwritten programs rarely have bytecode ex-
ceeding several hundred bytes. To support a typical range of Stack programs it must therefore be
possible to transfer, compile, and execute a program of at least 500 B in size.

For JIT compilation to be worthwhile, the time taken to compile and execute Stack bytecode as
native Arm bytecode must be comparable to the time taken to interpret the code, whilst the exe-
cution time must be significantly shorter. A reasonable goal, based on other JIT compilers, is for
JIT compiled code to run 10 times faster than interpreted code [Pal17; PyP18; Ora18; Arn+04].
A series of experiments must demonstrate that this requirement is met. It will be necessary to
develop a timing mechanism with external hardware; the micro:bit doesn’t have a user-accessible
clock of sufficient precision. The compiler will also need to support disabling certain features to
allow for time comparisons between different optimisation modes.

1.3 Challenges and restrictions

Many JIT compilers ‘trace’ execution to determine which functions are executed most frequently
and should therefore be compiled most optimally. Although tracing JIT are now standard for most
major programming languages that use JIT compilation, a tracing JIT will not be demonstrated
on the micro:bit due to the limited performance of the device and relatively small size of Stack
programs; tracing JIT are generally most useful in large programs [Arn+04; Bol+09; Ora18].

A compiled Stack program will require no more memory than an interpreted program, aside from
the additional space to store the compiled bytecode. However, the compiler will require additional
memory to write the compiled bytecode to and for its own internal data structures. Although the
micro:bit has 16 kB of RAM, only around 8 kB is available to the programmer.
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1.4. CONTRIBUTIONS CHAPTER 1. INTRODUCTION

The low performance of the micro:bit and the need to compile quickly restricts the variety and
complexity of compiler techniques that can be used. Many traditional compiler techniques depend
on an abstract syntax tree representation of the program code for tasks such as static analysis, type
checking, and instruction selection [App98]. However, the construction of these trees is not viable
with so little time and memory available, so techniques developed will rely on an implicit tree
or other elimination methods. Many compilers are implemented in high-level languages, which
often require large amounts of memory to support features such as garbage collection. Limited
performance and the availability of compilers therefore makes low-level languages such as C, C++,
or Rust a necessity [Lan16; Sap16].1

1.4 Contributions

This project introduces a JIT compiler for the micro:bit, which is also the first JIT compiler for the
Cortex-M0 processor. The JIT compiler can be embedded within existing micro:bit programs, or
alternatively used in conjunction with an IDE developed for Stack to support rapid redeployment
of programs.

The new redeployment process allows a program to be deployed immediately to the device and JIT
compiled so that it can begin execution in under 100ms, compared to 10 s for a full redeployment
of a native binary, which is typical of other tools.2 Additionally, JIT compiled code can execute
10-50 times faster than the interpreter.

Considerable effort was directed at the correctness and performance of the JIT compiler. Over
400 tests were used to ensure that the compiler produced correct code, and a quantitative testing
approach was employed to measure the exact execution time of compiled code.

Finally, we consider future extensions of this project, including the possibility of using JIT compi-
lation on microcontrollers that use low-powered long-range wireless networks to support software
updates on IoT sensors.

1Haskell and OCaml have been demonstrated on more powerful microcontrollers, but there are currently no major
implementations for either language that support the micro:bit [Gre18; Vau12].

2It takes 9 s to deploy a new binary to the micro:bit, and all other tools take at least 1 s to compile a new native
binary. 10 s is therefore a generous lower bound, as students also have to copy the compiled file to the device.
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1.5. OUTLINE OF THE REPORT CHAPTER 1. INTRODUCTION

1.5 Outline of the report

• Chapter 2 summarises the BBC micro:bit, the Arm architecture and Cortex-M0 processor,
calling conventions, JIT compilation, and related work

• Chapter 3 discusses the implementation of the project’s software, including the software that
receives code via serial and the compiler and its low-memory compilation techniques

• Chapter 4 discusses the correctness testing of the compiler and the performance testing,
which compared the interpreter with the JIT compiled code,

• Chapter 5 discusses possible future extensions of this project

• The appendices include a description of the Stack VM, Arm Thumb instructions, JIT compiler
options, and some tests

The source code for this project is available at http://github.com/thomasdenney/microjit.
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Chapter 2

Background

2.1 The BBC micro:bit

Figure 2.1: The BBC micro:bit

The micro:bit was developed by the BBC and partner organisations to “inspire digital creativity and
develop a new generation of tech pioneers,” and several programming environments were devel-
oped to support it [BBC15]. A C++ SDK, which wraps the lower-level SDKs for interacting with
device features such as the Bluetooth radio, was used for this project. The C++ SDK is wrapped
by high-level APIs in JavaScript and Python, which in turn support block-based programming en-
vironments targeted at children [Lan16; Mic18].

The micro:bit emulates a FAT filesystem when plugged into a computer. In most programming
environments the programmer must transfer a compiled binary file to the micro:bit, which then
writes the program to its internal flash and restarts before running the program. There have been
proposals to transfer only the code that changed to the micro:bit, but these were largely discarded
as too complex [FMM16]. Conversely, the MicroPython implementation supports a Python REPL
over serial, but it is restricted to interpreting a limited subset of Python [GB18].
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2.2. ARM ARCHITECTURE CHAPTER 2. BACKGROUND

The micro:bit has drawn comparison with the Raspberry Pi, another British low-powered Arm-
based computer aimed at encouraging children to pursue CS [Ras18]. The micro:bit was designed
to be simpler and lower powered — it doesn’t require the installation of a Linux distribution! The
micro:bit can interact with a Raspberry Pi via serial, or General Purpose Input Output (GPIO)
pins [Haw16].

There are two processors on the micro:bit [Mic17a]. The first is a Freescale-developed Cortex-
M0+ core that is used exclusively for USB communication. A second Cortex-M0 core, Nordic
Semiconductor’s nRF51, is used for code execution and interfaces with all other hardware. The
main Cortex-M0 core is clocked at 16MHz whilst the secondary Cortex-M0+ core is clocked at
48MHz [Fre14; Nor14].

The micro:bit has 256 kB of flash storage and 16 kB of RAM [Mic17a]. Both are addressed using
32-bit virtual addresses. It is possible to overwrite around 50 kB of empty flash storage at runtime.1

The primary communication interface used by this project was the micro:bit’s serial link, which
permits sending and receiving binary data over a USB link with a PC. High-level APIs on the mi-
cro:bit allow this interface to be treated like stdout/stdin. On a PC, software such as tty can be
used for communicating with the micro:bit [Lan16]. The micro:bit also has a set of digital GPIO
pins, which were used in this performance testing, as discussed in Section 4.2.

2.2 Arm architecture

Arm Holdings designs the Arm architecture and Arm core designs, licensing both to chip man-
ufacturers and industry partners. Arm’s designs follow the Reduced Instruction Set Computer
(RISC) architecture. The designs are split into the A-series for general purpose computing and
mobile phones, the R-series for real time applications, and the M-series for lower-powered embed-
ded devices [Arm18a]. Many of the M-series cores support Wi-Fi, and are widely deployed in IoT
products, but the Cortex-M0 and -M0+ are the smallest, cheapest, and most energy efficient of all
the designs in the series [Arm18c; Arm18d].

Recent A-series cores implement the 32-bit ARMv7 or 64-bit ARMv8 architectures; both of these
encode instructions in 32 bits. In an embedded environment this is often untenable due to re-
stricted flash capacities, an increased instruction decoding cost, and a larger bus size requirement.
Competitive chips have 8-bit or 16-bit instructions [Arm05a; Atm16]. The Cortex-M0 implements
the Arm Thumb architecture, which encodes most instructions in 16 bits.

Although it has a distinct instruction set encoding, the Thumb architecture shares a lot of similar-
ities with the full 32-bit Arm architecture. Both make 16 registers accessible to the programmer,
but in the Thumb architecture only the lower 8 registers are general-purpose (this reduces the
number of bits needed for register names). The remaining upper eight registers can be accessed by
a limited subset of instructions, although three have special purposes [Arm05a]:

1This value was determined by a runtime test in the compiler.
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2.2. ARM ARCHITECTURE CHAPTER 2. BACKGROUND

• r15 is the program counter

• r14 is the link register

• r13 is the stack pointer

2.2.1 Calling convention

The procedure call standard for the Arm architecture passes the first four arguments that fit in
32-bits in the first four registers, and pushes the remainder of the arguments to the stack. The
link register, r14, contains the return address and by branching back to this address a function can
return. The remainder of the registers are saved by the callee, and the function result is usually
returned in r0 [Arm15].

@ The link register only needs to be pushed if this function makes a
@ call to another function, which would cause its value to be
@ overwritten
push lr, r4, r5, r6, r7

@ Function code goes here

@ Pops the value of the LR back to the PC. Alternatively the instruction
@ blx lr can be used to return
pop pc, r4, r5, r6, r7

Listing 2.1: A skeleton for a function in Arm Assembly

2.2.2 Arm Cortex-M0

The nRF51 core used on the micro:bit is an Arm Cortex-M0 core clocked at 16MHz, so each cycle
executes in 6.25× 10−8 s.2 The majority of instructions execute in a single cycle, but all instruc-
tions requiring memory accesses (e.g. loads or stores) take at least two cycles. This contrasts
significantly with memory accesses on modern desktop processors, which can take 4-300 cycles,
depending on whether the data is cached [Int17]. Branches take 1-3 cycles (depending on whether
the branch is taken).3

The relatively low latency of memory operations aids compiler development, as the cost of spilling
registers (saving register values to memory so that the register can be used for storing another
value) is cheap. Therefore relatively straightforward register allocation algorithms can be used.

2Tests suggest that the clock rate is just below 16MHz
3A full list of cycle counts can be found in Appendix B.
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2.3. STACK CHAPTER 2. BACKGROUND

The Cortex-M0 doesn’t feature many optimisations typical of modern processors, such as out-of-
order execution and branch prediction, so the time a sequence of instructions takes to execute is
deterministic. However, the processor is pipelined such that instruction fetching, decoding, and
execution can occur in parallel [Arm10].

The majority of Thumb instructions are encoded in 16 bits, with the exception of a few branch in-
structions encoded in 32 bits. Thumb-2 is a later version of the instruction set that adds more 32 bit
encoded instructions, including more instructions that can be conditionally executed. The Cortex-
M0 implements very few Thumb-2 instructions, and none of them are used in my JIT [Arm10].

2.3 Stack

‘Stack’ is a VM specified by Alex Rogers and used at outreach events by theDepartment of Computer
Science, Oxford [Rog17a]. The VM is similar to traditional stack machines but its instruction set is
extensible; it supports adding optional instructions without needing to change existing runtimes.
The VM maintains an operand stack and a call stack with high-level instructions to manipulate both.

Most Stack instructions are encoded in a single byte, as documented in Appendix A. The only
exceptions to this are the PUSH instructions, which can take a signed 1- or 2-byte operand, and
optional instructions, which encode their effect on the stack in a second byte. Like the Thumb
instruction set, the Stack instruction set aims for very high code density, but sacrifices low-level
efficiency for high-level stack operations. See Section 4.3 for a comparison of their code density.

Stack was intentionally developed to support the hardware features available on microcontrollers
such as the BBC micro:bit, and therefore supports several instructions that access LEDs and the
accelerometer. Additionally, Stack supports using an Adafruit Neopixel, a programmable array of
RGB LEDs, with the micro:bit [Ada18].

Prior to this project there were two major implementations of the Stack VM, both of which inter-
preted Stack bytecode rather than compiling it to native machine code [Rog17b]. The first was
implemented as part of web app that additionally featured an assembler and linker, allowing the
programmer to compile a text-based assembly language to Stack bytecode. The second executed
on the micro:bit, but required that the Stack code was included as part of the binary transferred to
the micro:bit for execution. Importantly, this meant that a user that wanted to execute their code
on the micro:bit had to transfer a 512 kB file to their micro:bit, wait for it to fully flash the device,
and reboot it in order to see their code execute.4

4The file encodes the new contents of the micro:bit’s 256 kB flash storage in ASCII hexadecimal.
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2.4. COMPILATION TECHNIQUES CHAPTER 2. BACKGROUND

2.3.1 Comparison with similar virtual machines

Stack’s assembly language shares a great deal of similarities with Forth, a standardised concate-
native stack-based programming language originally developed in the 1970s for use on computers
with limited memory [RCM93]. It is still used in some microcontroller software, and later inspired
similar concatenative languages such as PostScript, which remains widely used in printers [Ert99].

The semantics of Forth are similar to Stack, in that it maintains separate call stacks and operand
stacks, but its treatment of functions differs.5 A function call in Stack corresponds to pushing
an address to the operand stack and issuing the CALL instruction, which will then push the return
address to the call stack, pop the function address from the operand stack, and jump to that address.
Forth instead permits the programmer to define a function as a new ‘word’ in the language that
has an explicit effect on the stack (e.g. a function that squares a number pops one integer and
pushes its square back to the stack), and then allows that ‘word’ to be used like any other language
instruction. Additionally, Forth provides explicit control structures (e.g. IF THEN ELSE) whilst
Stack only provides jumps. In general, Stack is more low-level than Forth and it would be possible
to create a compiler from a restricted subset Forth to Stack — Forth features such as self-modifying
code would have to be disabled.

Many other VMs are based on stack machines, including .Net’s Common Language Runtime and
the Java Virtual Machine [Mic17b; Lin+15]. They each specify a bytecode format and instruction
set with semantics designed for high-level languages with features such as garbage collection. Both
VMs allocate stack frames for each function call, which contains an array of local variables and a
separate operand stack.6 Stack doesn’t separate the local variables and the operand stack, nor does
it explicitly separate the stack frames of different functions. Stack’s lack of such metadata and
simpler instruction set allows for smaller program code, although at the cost of making verification
(e.g. type checking, bounds checking) significantly more complex as metadata must be derived
from program code.

2.4 Compilation techniques

Typical compilers are structured into a front end, which parses program source code and handles
high-level tasks such as type checking, and a back end which performs static analysis, code gener-
ation, and linking [App98]. The front end typically outputs an intermediate representation, which
may be the bytecode for a VM or an abstract syntax tree [LLV18a].

In compiler nomenclature, a basic block is a sequence of instructions that are always entered at the
same point, executed in the same order, and are terminated by a branch instruction (which may be
an implicit branch to the subsequent basic block). Only the heads of basic block are permissible

5Forth calls the call stack and operand stack the ‘return stack’ and ‘data stack’ respectively.
6Note that the approach for allocating stack frames is not specified by the specifications; some Java implementa-

tions may heap-allocate stack frames, for example.
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2.5. RELATEDWORK CHAPTER 2. BACKGROUND

jump or call destinations [App98].

Most compilers generate assembly for their target architecture in a text format and rely on an
external assembler and linker to convert this to the native machine code representation and resolve
jump and call destination addresses [GCC18; LLV18b]. Relying on external tools in this project is
not possible as most compiler toolchains are too large to execute on the micro:bit itself.

2.4.1 JIT compilation

JIT compilation compiles an intermediate representation of a program to native machine code at
the moment the code needs to be executed. Thanks to the growth in popularity of languages such
as Java and JavaScript since the mid-1990s, JIT compiled programs are executed on billions of com-
puters [Goo18]. Typical benefits include improved code density and portability, whilst significantly
improving on the performance of interpreting code instead, as described in Section 1.2. Many mod-
ern JITs trace program execution and use more aggressive compiler optimisations where functions
— and even basic blocks — are executed more frequently [Piz16].

2.5 Related work

A number of AOT and JIT compilers target the Arm architecture, and in many cases these compil-
ers generate Thumb instructions rather than full Arm instructions [LLV18a; Mon18]. Existing JIT
compilers only target the A- series of processor cores, which are commonly used in smartphones
and need to efficiently execute JIT compiled languages such as Java and JavaScript. There have
been no substantial efforts to implement JIT compilers on Arm R- or M- cores as these are substan-
tially lower-powered and it is has only recently become common to program them in higher-level
languages.

Several other programming environments exist for the micro:bit. Microsoft’s MakeCode supports
JavaScript and a visual “block-based” mode. It directly compiles the JavaScript to a Thumb binary
which must then be transferred to the device [Mic18]. MicroPython implements a limited subset
of Python 3 and interprets code directly on the device [GB18].

12



Chapter 3

The JIT compiler

I implemented a JIT compiler for Stack bytecode in C++. The compiler directly generates binary-
encoded Arm Thumb instructions, a necessity discussed in Section 2.4. An interpreter, loosely
based on prior work by Rogers, was developed alongside the compiler and was used to verify the
behaviour of the compiled code. Like the interpreter, the compiler takes a pointer to an array of
Stack bytecode, but will then return a pointer to generated Thumb bytecode on success rather than
immediately interpreting the code.

The compiler and VM are separated into a traditional, modular structure [App98]:

• Stack instruction decoding: Stack instructions are represented in the compiler through an
enumeration type. Additionally, a special ‘iterator’ allows for forward and reverse iteration
through Stack bytecode. Importantly, this class abstracts over variable-length and push in-
structions.

• Device Abstraction Layer (DAL): To simplify the generated code and to avoid dealing with
C++ calling conventions and the micro:bit SDK, a set of simpler functions were designed to
abstract over many of the optional Stack instructions. Some arithmetic operations (DIV and
MOD) were also implemented in this manner if there were no hardware implementations, and
some stack operations (NDUP, NROT, NTUCK) fall-back to C implementations.1

• Static analysis: Before compilation proceeds each instruction reachable from the first byte
in the code/data array is annotated with metadata, including whether or not it is the start of
a basic block, the start of a function, or whether its function uses recursion. The final result
of static analysis is a list of all reachable functions and their basic blocks. As described in
Section 3.8, the static analyser can be run at a later point from a different offset (to discover
previously unreachable code) for lazy compilation.

1See Section 3.6 for further discussion.
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CHAPTER 3. THE JIT COMPILER

• Compiler: Once static analysis is complete the compiler generates boilerplate code for han-
dling entry and exit to JIT-compiled code and bounds checks before generating Arm bytecode
based directly on the structure discovered in the static analysis phase.

• Thumb bytecode encoder: A set of around 70 functions corresponding to each of the in-
structions supported on the Cortex-M0 encoded the operands of each instruction. Most of
these functions perform basic bit shifts, and can therefore be inlined by the compiler.

• Linker: Used concurrently with the compiler. The compiled location of each basic block is
recorded by the compiler. Whenever a branch or call is encountered a series of nop instruc-
tions are emitted. Afterwards, the linker then replaces the nop instructions with branches
and calls to the correct destination.

Once linking is complete, the entire Arm bytecode for the compiled Stack code resides in a buffer
in memory. Before the code can be executed it is necessary to issue the DSB and ISB instructions,
which ensure that all memory writes complete and the instruction pipeline is flushed [Arm05a;
Arm12; Bra13]. The Cortex-M0 doesn’t have a cache, but it does have a 3-stage pipeline, so it’s
possible that the processor attempts to read the JIT-compiled code before it’s written back to mem-
ory. These instructions ensure all JIT-compiled code is fully written back to memory before they
are read back for execution. Section 3.4 describes how the bytecode in the buffer behaves exactly
like a function that adheres to Arm calling conventions, which means that the address of the buffer
can be cast to a function pointer, and then directly called.

Additionally, separate modules were developed to handle the transfer of Stack bytecode over serial
and writing the compiled result to flash. Separate code was developed to decode Arm instruc-
tions and verify the behaviour of the compiler with respect to the interpreter across over 400 tests,
described in chapter 4.

An important consideration, described in Section 1.3, is that individual features and optimisations
of the compiler can be enabled and disabled as needed. All configuration is done at the compile-
time of the compiler itself, so that the performance of different code generation techniques can
be compared. Compiler options control the approach for compiling conditional branches, register
allocation, constant loads, bounds checks, and tail-call optimisation. They are fully described in
Appendix C.
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3.1 Execution flow

In order to execute code with the interpreter, a client directly calls the interpreter with a pointer to
the stack code to be compiled. It then iterates through the code using the Stack bytecode decoder
and executes instructions as appropriate. It possibly also calls into the DAL for the execution of
certain instructions:

Entry point

Decoder Iterator Interpreter DAL

Figure 3.1: Interpreter flow

On the other hand, when the compiler is called it will call the static analyser, which will in turn call
the code iterator and decoder. The compiler itself then iterates through each function and basic
block, and encodes Thumb instructions before linking all the jumps. This then produces bytecode
that can be called:

Entry point

CompilerStatic analysis

Iterator

Decoder

Thumb encoder

Linker

Executable codeDAL

Figure 3.2: Compilation and execution flow
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When the project is used for programs that are sent via the USB serial link, the execution path for
the device is (lazy compilation means that execution can also enter the compiler, as in Figure 3.2):

Start up Execute code (if any) from flash Wait for new code

Compile new codeWrite new code to flash

Figure 3.3: Serial transfer flow

3.2 Compiling a subset of Stack

The Stack specification is deliberately straightforward with very few instructions, however there
are a few potential ambiguities and edge cases that would require significantly more memory in
order to compile (due to the need for extra metadata about the bytecode) or would compile to very
inefficient code.

The most important restriction is limiting conditional and unconditional jumps to those with ‘con-
stant’ destination addresses, i.e. the JMP and CJMP instructions that are immediately preceded
by a PUSH8 or PUSH16 instruction.2 This restricts jump destinations to addresses in the range
0 ≤ a < 215 as both PUSH instructions push signed values, and negative addresses are not permit-
ted. In the case of the micro:bit this doesn’t particularly matter because all compiled code must fit
within RAM, which has a capacity of 16 kB — each Thumb instruction takes two bytes so it would
never be possible for us to compile more than 213 Thumb instructions.3 The main reason for this is
that it significantly reduces the complexity of the linker, and avoids the potential for jumping into
the middle of basic block, as the compiler assumes that a basic block is only entered at its beginning
and only exited at its end.

Section 3.8 shows that this restriction need not apply to function calls.

Finally, the basic blocks of an individual function must be contiguous in the original Stack code.
This assumption is entirely reasonable as it is unlikely that a compiler or human would choose to
overlap basic blocks of different functions.

Other than these restrictions, the compiler generates code that exactly mimics the behaviour of the
definitional interpreter.

2This restriction also implies that a conditional/unconditional jump instruction cannot itself be a jump destination
3In reality the maximum program size is significantly smaller than this as the micro:bit runtime consumes several

kilobytes of RAM and the compiler’s own data structures also prevent larger sizes being available.
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3.2.1 Static analysis rules

The above properties are extended to a general rule that permits each byte in the Stack program
to be only interpreted in a single way. Consider the following Stack code, along with its binary
encoding:

Offset Instruction Encoding
0 Push8 24 0x18 0x18
2 Push8 32 0x18 0x20
5 Mul 0x02
6 Halt 0x20

If a piece of Stack code jumped to offset 0 then the stack would be filled with 24× 32 = 768 before
halting. If another piece of code jumped to offset 1 it would then interpret byte 1 as the start of
a push instruction, and its push value as 0x18, and byte 4 as a halt instruction. This would leave
24 on the stack, which is not desired. Variable length instructions therefore allow each byte to
have many interpretations depending on the start offset (consider a longer sequence of PUSH8 and
PUSH16 instructions), and it would add a great deal of additional unnecessary complexity to the
static analyser and compiler to determine which interpretation is the correct one to jump to.

Let

• n denote the offset of an instruction in an array of instructions of capacityK;

• next(n) be a function for the offset of the next instruction;

• prev(n) be a function for the offset of the previous instruction;

• pushValue(n) be a function for the value pushed by a push instruction at n;

• INS(n) be a predicate for each Stack instruction INS. Let Code(n) hold if and only if INS(n)
holds for some INS.

• Unexecutable(n) indicates that the byte at offset n should never be interpreted as an exe-
cutable instruction; and

• BasicBlockStart(n) indicates that n is at the start of a basic block whilst FunctionStart(n)
indicates that n is that the start of a function.

The single interpretation rule then requires the following property of the code:

Code(n) ⇔ ¬Unexecutable(n)

17
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Additionally, the static analyser also requires the following:

• Code(0) ∧ BasicBlockStart(0), i.e. the first byte is the start of some basic block that can be
entered

• INS(n) ⇒ Code(n) for all instructions INS

• BasicBlockStart(n) ⇒ Code(n)

• FunctionStart(n) ⇒ BasicBlockStart(n)

• PUSH8(n) ⇒ Unexecutable(n+ 1) ∧ n+ 1 < K

• PUSH16(n) ⇒ Unexecutable(n+ 1) ∧ Unexecutable(n+ 2) ∧ n+ 2 < K

• OPT(n) ⇒ Unexecutable(n+ 1) ∧ n+ 1 < K for all optional instructions OPT

• Code(n)∧¬(RET(n)∨JMP(n)∨HALT(n)) ⇒ Code(next(n)), i.e. unless this function halts
control flow the next instruction should be also be an executable instruction

• Unconditional and conditional jumps must be preceded by a push instruction, that the push
instruction pushes a value within the bounds of the instruction array, and that the corre-
sponding destination instruction is the start of a basic block:

JMP(n) ∨ CJMP(n) ⇒ prev(n) ≥ 0 ∧ PUSH(prev(n)) ∧
0 ≤ pushValue(prev(n)) < K ∧
BasicBlockStart(pushValue(prev(n)))

• If a function call is preceded by a push then the corresponding instruction must be the start
of a function:

CALL(n) ∧ prev(n) ≥ 0 ∧ PUSH(prev(n)) ⇒ 0 ≤ pushValue(prev(n)) < K ∧
FunctionStart(pushValue(prev(n)))

Static analysis checks verify that these rules are never broken, and these checks are performed
whenever lazy compilation is performed because it is possible that a lazily compiled function may
attempt to violate the rules.

The static analyser allocates a separate array to store whether the predicate is true for each offset
in the program being compiled. As only a single bit is required per predicate it is possible to store
all the predicate values for a particular instruction within a single byte. Therefore for a program of
sizeK the static analyser will only require an additionalK bytes.
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3.3 Virtual machine state

In order to model the behaviour of the Stack VM, a data structure, henceforth StackEnv, is used to
store the following pointers and values:

• StackSBase: base pointer for the operand stack — used in stack overflow checks

• StackSP: stack pointer for the operand stack

• StackSEnd: end pointer for the operand stack — used in stack underflow checks

• Status: a value that can be checked on termination indicating whether the VM terminated
successfully or with some error

• ErrorPC: the value of the program counter when an error occurred; used for debugging

• Compiler: a pointer to the data structure that was used to compile this code. This is re-
quired to support lazy compilation; see Section 3.8

• EscapeSP: the value of the Arm stack pointer when execution of the VM started. This is
required for escaping out of a Stack program with the HALT instruction regardless of how
deep the stack is. See Section 3.5.

3.4 Calling convention for Stack programs

Stack programs are compiled to Arm functions that can be called by code written in C/C++. Con-
trol flow returns to the calling function when the Stack program halts. A small amount of boiler-
plate code is generated to handle entry into the Stack code and returning to the main executable
afterwards.

In order to support safe execution of Stack code, executing code must be able to access data about
its environment, such as the status of the Stack VM or the bounds of the stack so it can determine
if stack underflow or overflow has occurred. Therefore a pointer to the object storing the Stack
environment is always stored in register r0.

Themost significant difference between the Stack VM and Arm architecture is the number of stacks.
Whilst the Stack VM maintains two separate stacks for operands (along with any other function
data) and return addresses, Arm only has a single general-purpose stack, albeit with a number of
instructions to simplify pushing/popping the return address.

Unlike other programming languages and environments, any piece of Stack code can access the
full operand stack, so there is no distinction between global and local variables, parameters, and
operands on the stack. As such, interleaving the operand stack with the call stack is impractical
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because it would mean that locating values on the stack beyond the return address would have to
be dynamically resolved at runtime, rather than computing them from fixed offsets from the stack
pointer.

The Stack runtime therefore maintains two separate stacks explicitly, just as the earlier interpreter
did. In order to make efficient use of Arm instructions, the existing stack is used for the Stack
call stack, whilst a separate buffer is used for the Stack operand stack. A pointer, storing the base
address of the operand stack, is always stored in register r1. The register r3 is additionally used
as a temporary register.

Finally, in order to reduce the number of memory accesses required, the value of the top of stack
is always stored in register r2. Whilst executing compiled Stack it is often necessary to execute a
function that is part of the runtime, so by storing these three values in the three lowest registers
they will form the first three arguments of any runtime function called, as per Section 2.2.1.

ARMSP SL0

SL1

SL2

SL3

...

Figure 3.4: ARM stack state

StackSP x0 (on termination)
x1

x2

x3

. . .

Figure 3.5: Operand stack state

r0

StackEnv

r1

StackSP

r2

x0

r3

temporary

r13

ARMSP

r14

SL0

r15

PC

Figure 3.6: Register state

SLi is the static link (return address) for the ith function on the stack.

The manner in which the return address is written to the call stack also differs between Stack and
Arm. In Stack the return address is written on the CALL instruction (i.e. the caller writes it),
whilst in Arm the called function can write it to the stack (and should if it then makes calls to
other functions). Therefore an important feature of the static analyser is to record which Stack
instructions are the destinations of CALL instructions so that it can be determined when, if at all,
to write the return address to the stack.
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3.5 Boilerplate code

When Stack code reaches the HALT instruction it is necessary to return control to the VM envi-
ronment, in the same way that the existing interpreter does. Therefore when compiled code is
entered the link register (which holds the return address to the calling C/C++ code) is pushed to
the Arm stack along with all callee-saved registers, and the value of the Arm stack pointer is saved
to EscapeSP, which is a field of the StackEnv data structure described in Section 3.3. Then, when
the halt instruction is reached it is only necessary to restore the stack pointer to the saved value,
and then return from the generated code by popping the original value of the link register to the
program counter along with the callee-saved registers.4

Stack code can either halt by reaching the last instruction in its buffer or the HALT instruction.
Therefore each function is followed by an unconditional branch to the halt code.

3.6 Register allocation

The compiler uses three different approaches for register allocation. These approaches can be
switched between at compile time, as described in Appendix C, and their performance is com-
pared in Section 4.2. The goal of a good register allocator is to ensure that frequently accessed
values remain in registers, so that they don’t need to be repeatedly accessed from memory, and
secondly to ensure that there are sufficient free registers such that values don’t have to be ‘spilled’
to memory [Aho+06]. Register allocation is generally split into two problems: local allocation
within a basic block and global or intra-block allocation between basic blocks [Koo94]. Only local
allocation algorithms were developed in this project, although it would be possible to extend the
algorithm for algorithm for intra-block allocation.

Stack doesn’t make a distinction between parameters, local variables, and temporary values, but
most traditional register allocation algorithms depend on this information to generate more effi-
cient code. More complex register allocation algorithms use graph colouring techniques to reduce
the number of spills; these approaches also weren’t implemented.

3.6.1 The straightforward approach

As described in Section 3.4, the VM state, stack pointer, and top of stack value are always stored
in registers r0, r1, and r2 respectively. The top of stack value and stack pointer only need to be
written to memory when returning back to the calling C/C++ code. The first approach compiles
Stack instructions so that their behaviour on memory mimics what the interpreter would do:

4In other environments, C++ exceptions are commonly used to solve the same problem; they are disabled in the
ARM mbed compiler.

21



3.6. REGISTER ALLOCATION CHAPTER 3. THE JIT COMPILER

• When an instruction acts on the top of stack value the instruction(s) that perform the same
operation are emitted without the need to affect memory or the stack pointer. For instance,
the Stack instruction INC is compiled as add r2, r2, #1 only

• For instructions that are binary operations, the stack pointer is incremented and the second
stack value is loaded from memory into the temporary register r3. The operation is then
computed into r2, the top of stack register. This means that addition, subtraction, and
multiplication can be performed in 3 instructions or 5 cycles (see Appendix B)

• When a value needs to be pushed onto the stack the current top of stack value is written to
memory, the stack pointer value is decremented, and the value is written to r2

As shown in Section 4.2, even this basic approach offers significantly better performance than the
interpreter. However, it has fairly significant disadvantages:

• Conditional jumps are inefficient. The sequence of Stack instructions < 5 CJMP, which
jumps to location 5 if the second value on the stack is less than the first, requires several
conditional jumps because the value of 0 or 1 must be written to the operand stack by the
compilation of the < operation, and this value must then be compared to 0 for the CJMP
operation. If the two top of stack values were both in registers beforehand this operation
could be reduced to a single comparison and branch.

• Most operations will result in a memory read or write, which means that the lower bound
for most Stack instructions is 4 cycles when compiled to Arm instructions.5

3.6.2 Using more registers

An obvious extension of the ideas presented in Sections 3.4 and 3.6.1 is to use the remaining four
general-purpose registers for storing more values from the operand stack.6 The second imple-
mentation of register allocation supports this idea by permitting up to five values to be stored in
registers instead of in memory. It also only updates the stack pointer when a value is written back
to memory, which significantly reduces the number of memory writes.

When five operand stack values are stored in registers it may be necessary to spill one of the register
values so that the register can then be reused. It is preferable to spill the value that is least likely to
be used next. The compiler employees a simple heuristic: most Stack instructions only manipulate
the top 2-3 values on the operand stack, so it always spills the deepest value still held in a register.

In the worst case, performance is exactly the same as the straightforward approach. However, in
the best case it eliminates at least one load or store per Stack instruction, which can significantly
reduce the total number of cycles required. Furthermore, this approach can reduce sequences of
instructions such as < 5 CJMP to a single comparison and conditional branch.

5A load or store is 3 cycles, and all other operations take at least 1 cycle
6Recall from Section 2.2 that only the lower eight registers are accessible by all instructions.
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3.6.3 Copy-on-write allocation for register values

Typical Stack code features a significant number of instructions that do nothing but manipulate
values on the stack so that the operands of an arithmetic instruction are the top two values on the
stack. In both of the previous approaches, the SWAP instruction would require at least three move
instructions, for example.7 If we know which registers hold which stack offsets, the compiler’s
internal data structures can be updated instead, which eliminates the need for register-to-register
moves. TUCK and ROT are eliminated in a similar manner.

This approach can be further extended to eliminate the DUP instruction. Instead of maintaining
only a single map of which registers are used for which stack offsets, we maintain a read map and a
write map, which are maps from stack offsets to registers. Whenever a value is written back to the
stack we simply update the read map so that it corresponds to the same register as the write map.

For instance, when a PUSH instruction is executed the read and write registers become equal:

Stack offset 0

r2

r/w

Figure 3.7: PUSH instructions cause the top of stack to have the same read/write register

However, when a DUP instruction is executed the read and write registers can be different:

Stack offset 1 0

r2 r4

r/w r w

Figure 3.8: DUP instructions cause the top of stack to have different read/write registers

7The value a has to be moved to a temporary register, then b’s value is moved to a’s register, and finally a’s value
is moved from the temporary register to b’s original register.
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Spilling becomes a little more complex with this technique, because the read register for the deepest
stack value may have multiple ‘readers’. If this is case, the value is written back to the stack, and
some higher stack offset that is still reading from the register has its write register updated to use
the write register of the value just written back to memory, thereby freeing a register:

Stack offset 4 3 2 1 0

r2 r4 r5 r6 r7

r/w r/wr/wr/wr w

Figure 3.9: An example of the state before spilling

Stack offset 3 2 1 0

r2 r4 r5 r6 r7

r/wr/wr/wr/w

Figure 3.10: The resulting state that leaves register r4 free

This approach immediately reduces the number of instructions emitted in cases where instructions
do a lot of manipulation of the stack (because it effectively converts them to no-ops), but it was
also extended to improve instruction selection for arithmetic operations. In many cases at least
one operand of an arithmetic operation may be known in advance, so an additional map is used to
store known register values. When a register whose value is known is used in an arithmetic operation,
we may instead choose to use an instruction that can carry the register value as an intermediate
operand.8 If this is not possible, the value can instead be written to a register and an instruction
that operates on two registers can be emitted instead. This approach also eliminates eliminate
constant expressions, as if both operands to an operation are known at compile time then there is
no need to compute them at runtime.

None of the approaches described support intra-block allocation, as register values are always com-
mitted to memory at the end of a basic block. A better approach would re-order (if necessary)
register values so that they are consistent on basic block entry and re-entry [Koo94; SB06].

3.7 Bounds checks

Like many high-level programming languages and runtimes, the Stack VM specification requires
that stack underflow and overflow are caught so that control can return to the surrounding C/C++
environment without crashing the device or performing undefined behaviour. The Stack interpreter

8Thumb instructions permit this for addition, subtraction, comparison, and shift operations
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implemented alongside the compiler performed a bounds check before interpreting each instruction
to verify that there are a) enough values on the stack for the instruction’s input and b) enough space
on the stack to push the results. The compiler could generate equivalent code, but this would incur
a significant cost on each instruction. 9 In order to reduce the frequency of stack checks the compiler
therefore only emits stack checks at the beginning of basic blocks, as if a stack underflow/overflow
would occur at some point in a basic block, it is acceptable to halt at the beginning of the basic block
with an error, even though the side effects may not be exactly the same.

In order to eliminate the need to load the base and end addresses of the stack from memory, the
base and end addresses are always stored in two of the upper general purpose registers; there is a
compiler option to disable this.

3.7.1 Bounds check elimination

Many high-level languages support automatic bounds checks on array accesses, but in many cases
the checks are redundant and can be eliminated [AT+98; Mos16; QHV02; WWM09]. For instance,
in Listing 3.1 there is no need to perform a bounds check on the access array[i] as the loop’s
condition requires that 0 ≤ i < array.length.

for (int i = 0; i < array.length; i++) {
x += array[i];

}
Listing 3.1: Example Java loop

There are no arrays in Stack beyond the operand stack itself, so bounds check elimination can only
applied to the bounds check that appears at the beginning of each basic block.

The number of values that a basic block accesses already on the stack, the number that it pushes
onto the stack, and the offset of the stack pointer from its original value at the beginning of a basic
block can all be determined during static analysis.10 Note that an instruction doesn’t necessarily
need to ‘push’ or ‘pop’ values on the stack in order to access them; the SWAP instruction requires
that there are two values on the stack already but it doesn’t affect the stack pointer.

Let a be the maximum number of values accessed on the stack above the initial value of the stack
pointer, p the maximum number of values pushed to the stack beyond the original stack pointer, and
n the offset from the original stack pointer at the end of a basic block. For example, a block of just
ADD will have a = 2, p = 0, and n = 1, whilst the instruction DUP will have a = 1, p = 1, and
n = −1.11 Note that |n| ≤ p and |n| ≤ a.

9A comparison and conditional branch are at minimum 4 cycles, but extra arithmetic is required on the stack
pointer. The worst case in my compiler for a single check is 11 cycles.

10The exception is if instructions like NDUP, NTUCK, and NROT are used with non-constant values. This doesn’t
matter as these are presently implemented as a function call that itself will perform a bounds check.

11Recall that the stack is descending; the stack pointer decreases as values are pushed onto the stack.
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After executing a basic block we know that there will be ≥ a− n values still on the stack, and the
stack still has ≥ p+ n space before it overflows. Therefore if a basic block jumps to another basic
block that accesses ≤ a − n elements or pushes ≤ p + n values then at least one, if not both, of
the stack checks can be skipped. This is surprisingly common; loops will generally leave the stack
in a consistent state on both entry and exit. Section 4.2.4 discusses the effect of bounds check
elimination on performance.

There are many other cases in which bounds checks can be eliminated, or the checks for several
basic blocks can be grouped together. However, most of these techniques require the construction
of control flow graphs for functions, which is not viable with the restrictedmemory of themicro:bit.

3.8 Lazy compilation

As described in Section 3.2, variable destination function calls are permitted, but variable desti-
nation branches are not. Variable destination jumps are not a common pattern in any major pro-
gramming language, but variable function calls are common; object oriented languages use them
for dynamic dispatch, for example.

When a call to an unknown location occurs, a call is instead made to an Assembly function that is
compiled as part of the core compiler. It looks up in a table to see if the function has already been
compiled, and if it has then it jumps to the appropriate destination. This operation is relatively
inexpensive, and comparable to the number of instructions/cycles required for indirect calls in
C++. On the other hand, if the function hasn’t already been compiled then control must return
to the compiler so that it can compile the function, along with any other functions that it may call;
this works by initiating the static analyser from the function to be compiled rather than the ‘main’
function. It is possible that the compiler could fail (e.g. if the ‘single interpretation rule’ discussed
in Section 3.2.1 was broken), and if this occurs then Stack code execution is terminated.

When the compiler emits an instruction it appends it to the end of a dynamically-sized array.12 If
this array reaches capacity it will be reallocated, which means that the location of the calling code
can change. This isn’t a problem for branch instructions, as these use relative offsets, but it is
a problem for function return addresses already on the call stack. Therefore a separate piece of
Assembly determines if the code has been moved, and if it has then it traverses the call stack and
adjusts all return addresses appropriately.

12Specifically, a C++ std::vector
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3.9 Tail Call Optimisation

The compiler supports Tail Call Optimisation (TCO), so if function calls itself and immediately
returns then an unconditional branch is performed instead. The interpreter doesn’t perform any
kind of TCO and instead recurses into itself on function calls. As discussed in Section 4.2.2, the
cost of function calls in the interpreter is much greater than in compiled code, so the performance
difference for programs that rely on tail recursion is significant.
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Chapter 4

Testing

4.1 Correctness

An obvious goal of this project is to ensure that the compiled code behaves correctly. To achieve
this over 400 tests were implemented, each consisting of a piece of Stack code and its expected
effect on the environment. The majority of the tests were automated and output their success state
over a serial link. Tests were broken down into groups that verified

• Instruction encoding produced the expected bit patterns;

• The behaviour of the encoded instruction by itself was as expected;

• Arm instruction decoding produced the expected results;

• The static analyser discovered all reachable basic blocks and functions and annotated them
correctly;

• Optional instructions were compiled so that they had they correct effect on the external
environment (e.g. turning on LEDs);

• Individual instructions correctly affected the operand stack, regardless of whether values
were pushed on before the instruction or during the test;

• The register allocators still produced correct results, even when presented with the opportu-
nity to aggressively optimise generated code;

• Larger programs produced the correct results;

• Larger programs compiled from a high-level language to Stack bytecode executed correctly;1

1This compiler was developed by Mark Riley, another student
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• Stack overflow and underflow were caught caught correctly.

Tests on Stack code were also executed in the interpreter to verify that the behaviour of the compiled
code was the same. Appendix D lists the sample code for some of these tests.

4.2 Performance

Performance tests were used to verify that JIT compiled code performed faster than interpreting
the same code; this was true in all cases. The process of compilation typically took 10 times longer
than interpreting the code, but this was significantly lower in the case of long-running programs.

Two approaches were used to determine the performance of the generated code. The first was a
qualitative approach during development by keeping track of the total cycle count of a series of
instructions, based on the data presented in Appendix B.2

The second, quantitative approach used a Salae Logic Analyser to record bit patterns written over a
digital pin during execution. The logic analyser connects to a single digital pin and the ground pin
of the micro:bit and records the value of the digital pin — either 0 when its voltage is the same as
the ground or 1 when it is higher — at a rate of 12MHz. Note that this is slightly below the clock
rate of 16MHz of the micro:bit’s Cortex-M0 processor. It is therefore not possible to measure with
single cycle precision, but this was never needed.

A simple protocol was developed to send short bit patterns over a digital pin. When a ‘zero’ needed
to be sent the digital pin was raised from low to high for a period of 2 cycles, andwhen a ‘one’ needed
to be sent the digital pin was raised from low to high for a period of 10 cycles. These values are
sufficiently high that they will always be detected by the lower precision logic analyser.

The following bit patterns were used:

Bit pattern Meaning
00 Start of interpreting code
01 End of interpreting code
10 Start of execution of JIT compiled code
11 End of execution of JIT compiled code

When each code test executed these bit patterns were issued over the digital pin and the name
of the test was printed over the USB serial link. A straightforward Python script took the digital
pin values, calculated the time periods between the start and end of interpreting, compiling, and
executing the code, and matched these time measurements with the name of each test.

2I deliberately implemented the instruction encoder — and all of its tests — for every Thumb instruction be-
fore embarking on the rest of the compiler to ensure that I had a good awareness of the performance of individual
instructions and the availability of alternative approaches.
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These performance tests were designed for comparison of two kinds of performance. Firstly, I
wanted to compare the performance of interpreting the code with executing the compiled code. In
order to do this, each test was executed 5 times and the total amount of time for setting up the test
was subtracted from the time measurement.3

Secondly, in order to compare the benefit of certain compiler optimisations the number of cycles
per test was computed. Again, this was done by executing each test 5 times but also by subtracting
the total amount of time taken to execute the empty program.4 Note that limitations of the logic
analyser mean that some of these values are non-integral.

4.2.1 Microbenchmarks

In microbenchmarks of fewer than 10 Stack instructions, compiled code typically performed 1.4-3.9
times better than interpreting the code. Sample code for these tests can be found in Appendix D.1.5

Name Interpreted code time /µs Compiled code time /µs Ratio
AdditionTest 73 46 1.6
AdditionTestPush 164 46 3.6
SubtractionTest 74 46 1.6
SubtractionTestPush 165 46 3.6
MultiplicationTest 74 46 1.6
MultiplicationPushTest 165 46 3.6
DivTest 113 84 1.4
DivPushTest 205 86 2.4
ModTest 107 77 1.4
ModPushTest 199 79 2.5
IncTest 71 45 1.6
DecTest 72 45 1.6
MaxTest 90 48 1.9
MinTest 90 48 1.9
MaxPushTest 182 47 3.9
MinPushTest 182 47 3.9
LtTest 74 47 1.6
LtPushTest 166 46 3.6
DropTest 73 46 1.6

Table 4.1: Single instruction microbenchmarks

3For example, it is necessary to ensure the operand stack is empty before executing each test. It only took around
100 cycles to perform this setup, but this value is fairly substantial when tests often executed in far fewer cycles.

4There is a small overhead to entering JIT code that only makes sense to remove when comparing JIT compiled
code with other JIT compiled code; when comparing interpreted and compiled code this overhead should be included
because the interpreter also has some overhead for entry

5All data is presented rounded to 3 significant figures, but performance ratios are rounded to 2 significant figures.
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Tests labelled with ‘Push’ have to firstly perform two push instructions and then perform the oper-
ation. The interpreter must perform these operations, but the compiler rather than the compiled code
can perform arithmetic operations with known constants. Therefore in these tests all the compiled
code is actually doing is placing some known value on the stack. These tests are not sufficient to
make a claim about the expected performance of the compiled code, but they provide a lower bound
for the expected performance improvement of JIT compiled code over interpreted code.

More substantial improvements are seen when executing a series of similar instructions, using the
stack manipulation instructions ROT, SWAP, and TUCK, or performing conditional branches. The
predominant reason for this is that duplicating a value at the top of the stack can typically compile
to only a single instruction, pushing a value to the stack can usually be optimised to no more
than two instructions, and stack manipulation instructions can be elided when values are already
in registers. For instance, ‘RotArithmeticTest’ performs a series of duplications, followed by an
alternating series of stack rotations and addition operations. The interpreter executes all of these
operations on actual memory, whilst the compiled code avoids executing them at all.

Name Interpreted code time /µs Compiled code time /µs Ratio
DupTest 72 47 1.6
DupManyTest 455 60 7.6
SwapTest 73 47 1.6
RotTest 108 48 2.3
TuckTest 108 48 2.3
RotArithmeticTest 814 52 15.8
RotPushArithmeticTest 259 47 5.6
Push8ManyTest 744 58 12.9
JumpTest 167 49 3.4

Table 4.2: Stack manipulation microbenchmarks. See Appendix D.2.

Instructions for conditional jumps perform significantly better in the compiled code than the in-
terpreted code, as the exact behaviour of comparison instructions doesn’t have to be replicated,
so long as the semantics of conditional brnaches remain the same. ‘EqCjmpTest1’, listed in Ap-
pendix D.3, performs a comparison followed by a conditional brnach. If the branch is taken this
series of instructions takes only 4 cycles. Therefore the lower bound of 6.3 times faster for the
execution of conditional jumps in this style suggests that there will be a significant improvement
for typical programs involving ‘if ’ statements and ‘while’ loops.

Name Interpreted code time /µs Compiled code time /µs Ratio
JumpTest 167 49 3.4
CjmpTest(false) 213 55 3.9
CjmpTest(true) 167 50 3.4
EqCjmpTest1 308 49 6.3

Table 4.3: Branching tests

Overall, these figures suggest that a typical program should therefore perform at least 1.5 times
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faster when compiled than interpreted, but that we should expect larger improvements (> 4-10
times faster) when jumps and comparisons are involved.

4.2.2 Representative programs

Tests on small numbers of instructions are useful for verifying the correct behaviour of the compiler
and finding lower bounds for performance improvement, but they do not serve as an adequate
guide for the performance of typical programs, which can benefit from bounds check elimination,
as discussed in Sections 3.7.1 and 4.2.4. The programs listed in Appendix D.4 were used to verify
the behaviour and performance of more complex Stack programs. These programs demonstrate far
more considerable performance improvements than the microbenchmarks.

Name Interpreted code time /µs Compiled code time /µs Ratio
FunctionTest 252 51 5
BoundedRecursionTest 717 74 9.7
IterativeFibonacciTest 6,530 122 53.6
RecursiveFibonacciTest 791,000 21,000 37.7
JumpToFunctionTest 2,190 112 19.6
JumpToNonRecFunctionTest 1,480 82 18
GCDTest 7,320 636 11.5
TailRecTest 3,520 141 25
EnumTest 2,800 297 9.4
LoopExitTest 23,200 2,610 8.9

Table 4.4: Larger program tests

The most significant performance improvements are seen in the Fibonacci programs, as they per-
form a large number of conditional jumps, which are substantially faster in compiled code than
they are in the interpreter. Tests that perform a large number of function calls are also much faster;
the interpreter implements these by recursively calling itself, which incurs significant overhead.

The last two tests listed in Table 4.4 are both performed on tests using code generated by another
student’s (Mark Riley) compiler. Each time that he wanted to update the value of a local variable in
his code he generated a call to a function, listed in Listing 4.1, that performed a series of stack rota-
tions to update the corresponding value on the operand stack. The JIT compiler did not implement
function inlining, but a future version of the compiler could choose to inline this function. Com-
bined with the existing register allocator, this could eliminate the need to perform any operations
beyond saving the value to the appropriate memory location at the end of the basic block.

DUP INC NROT DROP DEC NTUCK RET
Listing 4.1: The varReplace function
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4.2.3 Register allocation

Section 3.6 describes 3 approaches for register allocation. Note that certain optimisations, such as
improving the performance of conditional jumps, are only available with the final register allocator.

Allocator Naive Register Register with CoW
Test name Cycles Cycles × faster Cycles × faster
MaxTest 65 25 2.6 25 2.6
SwapTest 22 24 0.9 22 1
RotTest 122 29 4.2 26 4.7
TuckTest 120 29 4.2 26 4.6
RotArithmeticTest 305 63 4.9 38 8
RotPushArithmeticTest 139 30 4.7 22 6.4
BoundedRecursionTest 109 109 1 109 1
IterativeFibonacciTest 4,170 1,790 2.3 263 15.8
RecursiveFibonacciTest 114,000 98,700 1.2 67,100 1.7
JumpToFunctionTest 325 301 1.1 230 1.4
JumpToNonRecFunctionTest 230 207 1.1 136 1.7
GCDTest 3,800 2,280 1.7 1,910 2
TailRecTest 531 479 1.1 324 1.6
MarksEnumTest 933 892 1.1 825 1.1
MarksLoopExitTest 8,840 8,630 1 8,240 1.1

Table 4.5: A comparison of each register allocation approach

These data reveal that implementing the more advanced register allocators was worthwhile, even
though their structure was significantly more complex than the naive allocator. Using the basic
‘register’ allocator performs better in all tests than the ‘naive’ allocator, except in certain cases where
the ‘naive’ allocator had best-case implementations already available to it (the ‘register’ allocator
adds an extra redundant store instruction — which costs two cycles — in the implementation of
the SWAP instruction).

In all cases the register allocator with the copy-on-write mechanism performs much better than the
naive allocator.6 Some of this improvement is the result of performing arithmetic at compile time
or generating faster code for conditional jumps, but importantly this allocator avoids redundant
loads and stores.

6Including all tests not listed here.
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4.2.4 Bounds checks and their elimination

Including bounds checks to prevent stack overflow and underflow is expensive, but they ensure
that even incorrect programs halt and return to the executing environment safely. Section 3.7.1
discusses conditions under which it is safe to eliminate bounds checks on the stack. Table 4.6
compares the number of cycles executed for different bounds check approaches.

Cycles
Name No checks Bounds checks BCE Benefit of elimination
FunctionTest 20 36 36 0%
BoundedRecursionTest 73 109 109 0%
IterativeFibonacciTest 231 369 263 28.7%
RecursiveFibonacciTest 47,400 77,000 67,100 12.8%
JumpToFunctionTest 110 236 230 2.5%
JumpToNonRecFunctionTest 56 137 137 0%
GCDTest 1,590 1,910 1,910 0.0%
TailRecTest 108 324 324 0%
EnumTest 764 857 825 3.7%
LoopExitTest 7,370 8,370 8,240 1.6%

Table 4.6: Bounds check elimination

Bounds checks are clearly a costly addition to many programs; they make ‘TailRecTest’ three times
slower, for example.7 Future work could extend the eliminator to remove more checks.

4.2.5 The cost of lazy compilation

To support function calls to locations that are determined dynamically at runtime, the compiler has
to support lazy compilation of functions that weren’t necessarily discovered in the first round of
static analysis. When a function that hasn’t been previously compiled is called, the compiler must
be re-entered and compilation must start again. The time spent in the compiler depends on the
complexity of the code that needs to be compiled.

Dynamic calls Lazy compilation required /cycles Compilation done /cycles × faster
1 17,100 291 58.9
2 34,500 543 63.4

Table 4.7: Lazy compilation of dynamic calls

Table 4.7 shows that in a single execution both these tests perform substantially worse than the
interpreter (the interpreter is about 5 times faster for each program) but once the dynamically called
functions have been lazily compiled they then execute in far less time (and significantly outperform
the interpreter).

7Bounds checks on some tail calls can be eliminated, but this particular program doesn’t admit any
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4.3 Code density

Rather than JIT compiling the bytecode for an arbitrary VM, this project could have received AOT
compiled Arm bytecode via serial and linked it on the device. However, Table 4.8 shows that Stack
bytecode is generally able to achieve significantly better code density for representative programs.

Name Stack bytecode size /B Compiled Arm bytecode size /B Ratio
FunctionTest 8 132 16.5
BoundedRecursionTest 25 226 9.0
IterativeFibonacciTest 40 234 5.9
RecursiveFibonacciTest 30 202 6.7
JumpToFunctionTest 26 222 8.5
JumpToNonRecFunctionTest 16 152 9.5
GCDTest 27 226 8.4
TailRecTest 19 168 8.8
EnumTest 178 670 3.8
LoopExitTest 280 1086 3.9
LongCodeTest 1004 444 0.44

Table 4.8: Comparison of bytecode sizes

‘LongCodeTest’ is a specially constructed test, described in Appendix D.4, that was used to de-
termine the maximum size of a program that can be compiled. It exploits features of the register
allocator so that the Arm bytecode emitted is actually shorter than the original code. Importantly,
note that this meets the requirement that the compiler can compile Stack programs of at least 500 B
on the micro:bit.
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Chapter 5

Conclusion

This project successfully developed a JIT for the BBC micro:bit, alongside software to support pro-
gramming the micro:bit with Stack programs over serial. The JIT compiler produces code that per-
forms significantly better than interpretation, even though the limited resources of the micro:bit
restrict the compiler techniques that could be employed. The successful use of a JIT compiler on
such a low-powered device suggests that embedded software for IoT devices could use JITs for
deploying software.

5.1 Reflection

I really enjoyed implementing this project, especially the low-level programming. Managing the
interoperation of Assembly, C, and C++ was certainly an challenge, but an enjoyable one nonethe-
less.

I got started with the project much faster than I expected. Somemicrocontrollers use a pureHarvard
architecture, which requires program and data memory to be completely separate. The Cortex-M0
uses the more modern modified Harvard architecture, which does allow them to be in the same
address space. My supervisor and I were initially concerned that it would be necessary to write the
generated code to flash before executing it, but resources on self-modifying Arm code revealed this
wasn’t necessary.

The majority of the instruction encoding code was written in Michaelmas, the bulk of the compiler
was written over the Christmas vacation, and I spent Hilary tidying up the compiler and imple-
menting serial transfer.

Whilst I didn’t mind implementing the code generation parts of the compiler, I particularly disliked
implementing the linker, the code for lazy compilation (because of the need to correct return ad-
dresses on the call stack), and some of the later register allocators. I’m a little disappointed that I
didn’t implement a more advanced register allocator or bounds check eliminator, but limitations of
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the device ensured that it was unlikely that I’d implement these features. By the end of the project
I frequently hit the RAM ceiling of the micro:bit.1

Profiling the micro:bit was easier than I expected thanks to the Salae Logic Analyser provided by
Alex Rogers, my supervisor. It came with a piece of software that could export the timing data
directly to a CSV file. I then wrote a separate set of Python scripts that processed this data for
presentation in this report.

5.2 Future work

The JIT compiler presented is portable to any Arm processor that supports Thumb 2 instructions,
which includes all ARMv6+ cores. Therefore the compiler could be adapted to other Arm micro-
controllers, or indeed most smart phones. Many IoT devices use low-powered wide-area networks
for sending and receiving small messages, on the order of less than 100B per day. Stack’s compact
representation would allow for transmitting small programs, or fragments of programs, using such
protocols to provide software updates for devices deployed “in the field.” A future project would
use the JIT compiler on an IoT device to support receiving software updates or alternatively create
dynamically reconfigurable sensors. The Stack bytecode representation could also be optimised
so that more frequently used instructions are encoded in fewer bits, or common combinations of
instructions could be reduced to a single higher-level instruction.

An alternative project could also adapt the JIT compiler to support VMs other than Stack. Mi-
croPython is a widely used for programming the micro:bit in schools [GB18]. Existing desktop
implementations of Python, such as CPython and PyPy, use a stack-based VM internally [Bol+09;
Pyt18]. An adaptation of this project would instead support the internal bytecode of an existing
Python implementation, or add JIT compilation support to the MicroPython project.

As described in Chapter 3, a number of traditional JIT techniques were not implemented because
of the limited power of the Cortex-M0. As Thumb code can be executed by most Arm processors,
the JIT compiler could incorporate more advanced ideas, including tracing. A tracing JIT could
also be used to selectively ‘uncompile’ functions that are used infrequently and instead opt to
interpret them, which would free up memory for functions that are used more frequently. Peephole
optimisation—which replaces short sequences of instructions with shorter instructions—was also
not implemented as it typically requires ‘pattern databases’ that are often hundreds of kilobytes to
several megabytes. With only a few kilobytes of RAM and around 50 kB of flash storage free at the
end of the project, pursuing peephole optimisation wasn’t viable, even though it typically reduces
the code size by 50% [App98; Lam80].

1As described in Section 2.1, although there is 16 kB of RAM, only about 8 kB can be user-allocated at runtime.
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Appendix A

The Stack Virtual Machine

Please note that this appendix is a summary of Alex Roger’s original description of Stack [Rog17a].

The Stack Virtual Machine maintains an operand stack and call stack. Unless otherwise specified, all
instructions only affect the operand stack. The program code and data is encoded as an array of
bytes, and the virtual machine permits branching to any byte within the array.1 As instructions
are limited to manipulating the operand stack and cannot write back to the code/data array it is
not possible to produce self-modifying Stack code. The operand stack is filled with 32-bit signed
integers, whilst the call stack uses 32-bit unsigned integers.2

If execution reaches the end of the code/data array without halting, execution should terminate as
if a halt instruction had been reached.

In the following P —Q denotes a stack effect, where P is the prior state of the top of the stack
and Q is the result after popping off P and pushing Q. In both the stack state should be read from
right-to-left, i.e. the top of stack is at the end. The result of a boolean operation is either 1 or 0.

The operand values of the PUSH instruction are encoded in two’s complement little-endian.

1This array of bytes is always accessible through the FETCH instruction
2As these just represent the locations of Stack code they are offsets within the byte array. However, as this stack

cannot be directly manipulated through Stack instructions the contents don’t actually matter — in the JIT implemen-
tation the values correspond to the locations of compiled Arm bytecode.
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A.1 Core instructions

Instruction Encoding (hex) Effect Notes
ADD 00 ab—x x = a+ b
SUB 01 ab—x x = a− b
MUL 02 ab—x x = a ∗ b
DIV 03 ab—x x = a+ b
MOD 04 ab—x x = a/b
INC 05 ab—x x = a+ 1
DEC 06 ab—x x = a− 1
MAX 07 ab—x x = max(a, b)
MIN 08 ab—x x = min(a, b)
LT 09 ab—x x = a < b
LE 0A ab—x x = a ≤ b
EQ 0B ab—x x = a = b
GE 0C ab—x x = a ≥ b
GT 0D ab—x x = a > b
DROP 0E a—
DUP 0F a— aa
NDUP 10 n—x x is the nth value on the stack (from zero)
SWAP 11 ab— ba
ROT 12 abc— bca
NROT 13 n—P P corresponds to the remaining top n elements

rotated from bottom to top
TUCK 14 abc— cab
NTUCK 15 n—P P corresponds to the remaining top n elements

rotated from top to bottom
SIZE 16 — k k is the number of elements on the operand

stack
NRND 17 n—x x ∈ {0, 1, . . . , n− 1}
PUSH8 18 x —x
PUSH16 19 l h —x l are the lower 8 bits and h are the upper 8 bits

of the 16-bit two’s complement representation
of x

FETCH 1A a—x x is the 16-bit two’s complement little-endian
at address a in the code/data array

CALL 1B a— Pushes the program counter to the call stack and
jumps to the address a

RET 1C — Pops the return address from the call stack to
the program counter

JMP 1D a— Jumps to the address at a
CJMP 1E ca— Jumps to a if c ̸= 0
WAIT 1F d— Blocks for dms
HALT 20 — Halts program execution
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A.2 Optional instructions

All optional instructions are encoded in two bytes, where the first byte is always greater than or
equal to 80 (in hexadecimal) and the second byte encodes the number of values pushed to the
operand stack in the upper four bits, and the number of values popped in the lower four bits.
The optional instructions specified below are either from the original description of Stack for the
micro:bit, or additions I implemented as part of the project.

Instruction Encoding (hex) Effect Notes
SLEEP 80 01 d— Enters low power mode for d seconds and re-

sumes with empty operand and call stacks at ad-
dress 0.

TONE 81 02 f — Starts playing a tone of frequency f , or stops
playing if f = 0

BEEP 82 02 fd— Blocks for dms whilst playing a tone at fre-
quency f

RGB 83 03 rgb— Sets the attached NeoPixel to the colour repre-
sented by red r, green g, and blue b

COLOUR 84 01 c— Sets the NeoPixel to the colour represented by
the three bit colour c

FLASH 85 02 cd— Flashes the NeoPixel the 3-bit RGB colour c for
dms (blocking)

TEMP 86 10 — t t is the temperature in Celsius
ACCEL 87 30 xyz— x, y, z represent the current accelerometer read-

ing on each axis
PIXEL 88 02 cp— Sets LED p ∈ {1, 2, . . . , 9} to colour c
NUM A0 01 x— Uses the micro:bit LEDs to scroll the number x

(blocking)
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Cortex-M0 instruction cycle counts

The following summarises the cycle counts for the instructions available in the Thumb architecture
on the Cortex-M0 that are used by the JIT compiler. The values are as documented by Arm, or in
cases where there were ambiguities they have been verified by profiling the nRF51 core on the
micro:bit [Arm10].

Operation type Cycle count
Arithmetic operations (including multiplication) not affecting the PC 1
Register-to-register move not affecting the PC 1
Arithmetic operations or moves affecting the PC 3
Logical and comparison operations 1
Load/store (general) 2
Load/store (n registers) 1 + n
Push/pop n registers (excl. PC) 1 + n
Pop n registers (inc. PC) 4 + n
Conditional branch 3 if taken, 1 if not
Unconditional branch 3
Branch with link 4
Branch with exchange 3
Branch with link and exchange 3
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JIT compiler options

The compiler and environment can be configured with a number of different options that affect the
performance and size of generated code, as well as a number of debugging options:

• Allow PC relative loads: ARM supports loading a 32-bit integer from a fixed offset from
the current program counter. The benefit of doing this is that it only takes 2 cycles, and is
therefore usually the fastest way to load a large constant (smaller constants can be loaded
to a register via a single mov instruction). However, this introduces a small amount of extra
complexity to the linker, so it is sometimes best avoided, and is disabled by default.

• Always print compilation: A debugging mode (off by default) that prints a textual repre-
sentation of the generated Thumb instructions over the serial link.

• Bounds check elimination: Described in Section 3.7.1.

• Conditional branch type: The naive approach means that if a comparison instruction (<,
<=, =, >=, >) is followed by a CJMP then it will generate comparison code that writes a 0 or 1
to the top of stack, and then the CJMP code has to compare this value in order to perform the
jump. An improved mode, which significantly improves performance for code with a large
number of conditional jumps, is on by default and reduces this sequence of instructions to a
single comparison followed by a single conditional jump.

• Profiling enabled: Ensures that special bit patterns are sent over one of themicro:bit’s digital
output pins before and after execution of interpreted or compiled code. Used for performance
testing. Off by default.

• Register allocation: Switches between the three approaches discussed in Section 3.6.

• Register write elimination: adopts the approach of allowing separate read/write register
maps, as discussed in Section 3.6.3. On by default.

• Stack check mode: Can be used to disable bounds checks, which help to prevent stack
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overflow and underflow. The default approach generates a small amount of code (< 10
instructions) at the beginning of each basic block, but there is the alternative approach of
performing a function call to test for stack underflow or overflow. This performs slightly
worse in the case that stack checks usually succeed, but is better in the case when they
usually fail. As this is not the expectation it is not on by default.

• Tail calls optimised: On by default.
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Stack test samples

This appendix lists sample test programs that were used to verify the correctness and performance
of the compiler. For reference the original Stack assembly and Stack bytecode, encoded in hexadec-
imal, have been included.

D.1 Single instruction samples

Add test

Two values were pushed to the stack prior to the execution of the test. Similar tests were also used
for all other binary operators.

ADD 00

Add push test

The test itself pushed values onto the stack rather than assuming that they were there already:

37 18 25
42 18 2A
ADD 00

Again, such tests were used for all binary operators.
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D.2 Stack manipulation samples

Dup Many Test

DUP 0F
DUP 0F
DUP 0F
...

The final version of this test used 10 DUP instructions. Several instructions, especially stack ma-
nipulation functions that could be elided by the later register allocators, were tested in this manner
to ensure their behaviour was still correct.

Rot and Arithmetic Test

1 18 01
DUP 0F
INC 05
DUP 0F
INC 05
DUP 0F
INC 05
DUP 0F
INC 05
ROT 12
ROT 12
ADD 00
ADD 00
ADD 00
ADD 00
ADD 00

This test was used for checking correctness when the compiler could completely eliminate arith-
metic operations, checking correctness of the register allocator when DUP instructions were used,
and comparing the performance of the more advanced register allocators.
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D.3 Conditional Jump sample

The following test begins with two values already pushed onto the stack, and pushes different
values depending on whether they are equal.

EQ 0B
eq_dest 18 07
CJMP 1E
10 18 0A
HALT 20

eq_dest:
20 18 14

D.4 Larger program samples

Function test

Calls a function to multiply two numbers on the top of stack together.

func CALL HALT 18 04 1B 20
func:

2 MUL RET 18 02 02 1C

Iterative Fibonacci

Computes the 18th Fibonacci number using an iterative algorithm.

18 fibonacci CALL 18 12 18 06 1B
HALT 20

fibonacci:
DUP 0F
1 GT isGtOne CJMP 18 01 0D 18 0E 1E
RET 1C

isGtOne:
0 1 18 00 18 01

loop:
DUP TUCK 0F 14
ADD 00
ROT 12
1 SUB DUP 4 NTUCK 18 01 01 0F 18 04 15
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1 GT loop CJMP 18 01 0D 18 12 1E
ROT DROP SWAP DROP 12 0E 11 0E
RET 1C

Recursive Fibonacci

This program computes the 15th Fibonacci number using a recursive algorithm.1

15 fibonacci CALL 18 0F 18 06 1B
HALT 20

fibonacci:
DUP 0F
1 GT gtOne CJMP 18 01 0D 18 0E 1E
RET 1C

gtOne:
DUP 0F
1 SUB fibonacci CALL 18 01 01 18 06 1B
SWAP 11
2 SUB fibonacci CALL 18 02 01 18 06 1B
ADD 00
RET 1C

Greatest Common Divisor

The greatest common divisor of two numbers is computed using the standard tail recursive algo-
rithm.

610 987 gcd CALL 19 62 02 19 DB 03 18 0A 1B
HALT 20

gcd:
DUP 0F
0 EQ ret0 CJMP 18 00 0B 18 19 1E
DUP ROT SWAP MOD 0F 12 11 04
gcd CALL RET 18 0A 1B 1C

ret0:
DROP RET 0E 1C

1This program is not intended to compare the performance of the iterative and recursive algorithms; it doesn’t
matter that they computer different Fibonacci numbers
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Summary of other larger programs

• BoundedRecursionTest: Perform a series of 6 recursive calls to further demonstrate that
function calls are less expensive in compiled code.

• JumpToFunctionTest: Perform a while loop that decrements a value to zero where the start
of the while loop is at the same address as the start of a function.2

• JumpToNonRecFunctionTest: Similar to the above.

• TailRecTest: Use a tail-recursive function to decrement the top of stack down to 0, starting at
10. In the interpreter this requires 10 recursive calls, but in the tail-call-optimised compiled
code this is reduced to code equivalent to a while loop.

• EnumTest: Based on compiled code generated by Mark Riley’s compiler for a high-level
language to Stack bytecode. This included a number of patterns, such as using a function to
treat specific values on the operand like variables, that could be optimised by features of the
compiler including tail-call-optimisation and the register allocator.

• LoopExitTest: Also generated by Riley’s compiler. This program had several nested loops
in a high-level language, and translated to Stack bytecode containing a lot of unconditional
and conditional jump instructions.

• LongCodeTest: The test initially assumes a value n on the stack. It then pushes a onto the
stack, and repeatedly performs the sequence of instructions:

1 ndup rot add swap

These leave the values a and n+ a on the operand stack. Therefore if the above is repeated
k times, the final values on the stack are a and n + ka. This is clearly an inefficient way to
do this computation; the test was used to determine the maximum bytecode size that can be
compiled.

2This test was originally developed to ensure the correctness of the linker.
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